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Abstract-A method is developed to determine the shape of steady state solidification interfaces formed when 
liquid above its freezing point circulates over a cold surface. The solidification interface, which is at uniform 
temperature, will form in a shape such that the non-uniform energy convected to it is locally balanced by 
conduction into the solid. The interface shape is of interest relative to the crystal structure formed during 
solidification ; regulating the crystal structure has application in casting naturally strengthened metallic 
composites. The results also pertain to phase-change energy storage devices, where the solidified 
configuration and overall heat transfer are needed. The analysis uses a conformal mapping technique to 
relate the desired interface coordinates to the components of the temperature gradient at the interface. These 
components are unknown because the interface shape is unknown. A Cauchy integral formulation provides a 

second relation involving the components, and a simultaneous solution yields the interface shape. 
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NOMENCLATURE 

height of region, B = b/y ; Q2, 
a2 a2 

constant of integration ; 
=j$+av'. 

= (1 - k2)/k2, location on c-axis of u- 
plane ; 

Greek symbols 

Y, function specifying variation of q along 
interface ; 

= k,(t, - r,)b/Q = k,(t, - tw)/4; length 
scale quantity; 

II, 
0, 

ordinate in u-plane; 
angle from x direction to normal of 
interface, see Fig. 1; 
abscissa in u-plane ; 
dummy variable of integration ; 
ordinate in W-plane. 

elliptic integral of the first kind; 
= q,(s)/q,, ratio of local heat flux along 
interface to reference flux ; 
complete elliptic integral of the first kind; 
thermal conductivity of solid ; 
modulus of elliptic integral, k’ = 

JiX; 
normal to interface, N = n/y ; 
total heat flow rate through solid region, 

Q = Q/kn(t, - ~1; 
heat flow rate per unit area, 4 = qy/k, 

(1, - t,) = q/4; 
= Q/b, average heat flux through region ; 
amplitude of imposed heat flux variation 
along interface ; 
coordinate along solidification interface, 
s = s/y; 
= (t - t,)/(t, - t,), temperature ratio; 
temperature; 
integrals defined in equations (39) and 

(40) ; 
= 5 + iv, intermediate mapping plane ; 
=- T + iti, complex potential 
function ; 
Cartesian coordinates, X = x/y, Y = y/y ; 
= x + iy, complex variable; 

= Z/Y ; 
a2 132 

=s+,; 
aY 

Subscripts 

r, 
s, 
w, 
1, 2, 334, 

reference value when Aq = 0; 
at solidification interface ; 
cooled wall ; 
the four corners of the solidified region, 
see Fig. 1. 

Superscripts 

A, B, refer to Quad A and Quad B integration 
rules. 

INTRODUCTION 

IN A HEAT conduction analysis the geometry of the 
solid is usually known, and various boundary con- 
ditions are applied to yield the temperature distri- 
bution or heat flows within the body. The present 
analysis will deal with a situation where an additional 
boundary condition is specified. The shape of the 
body is unknown and is to be found to satisfy this 
additional constraint. This type of analysis has appli- 
cation for obtaining equilibrium shapes of a solid in 
contact with its superheated liquid phase. The in- 
terface between the phases is at the solidification 
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temperature and also has heat transfer to it from the 
liquid phase. The interface will form such that the 
convective heat transfer to it can be conducted away by 
the solid to the portion of the boundary that is being 

cooled. The analysis will show how the interface shape 
is influenced by non-uniformities in the convective heat 

transfer. 
The present method is pertinent to the analysis of 

continuous casting processes for manufacturing 

strengthened metallic components. An analysis of 
interface shapes during casting was made in [I] for 
uniform convection at the solidification interface. By 
having convective conditions that are sufficiently well 

regulated at the interface, a strengthened composite 
structure can be formed consisting of a reinforcing 
phase within a metallic matrix. Related situations are 

the effects of natural convection in the melted region 
around a cylinder [2], the shape of a steady state frozen 

layer formed on a cold plate within a warm liquid flow 
[3, 41, and the shapes of solidified regions in phase 
change energy storage devices. The analytical results 
can also be used for comparison with solutions by 

finite difference procedures. 
This analysis considers a solid region that has one 

boundary at a temperature below the freezing point. 
Another boundary is the solidification interface in 
contact with the liquid phase. The interface shape is 

found subject to constraints of uniform temperature 
and an imposed heat flux distribution. A conformal 

mapping procedure developed in [5] can be used to 
obtain the interface coordinates if the relation is 

known between components of the temperature gra- 
dient along the interface; this relation is found by 
using a Cauchy integral formulation. To demonstrate 
the method and provide useful results, solidified 

shapes are obtained for a cosine heating variation 

along the interface. Analytical results were found in [6] 
for small cosine heating amplitudes, and good agree- 

ment is obtained. Other heating distributions can be 
used as obtained by coupling the present solution with 
an analysis in the liquid phase. The use of conformal 
mapping limits the method to 2-dim. configurations. 

ANALYTICAL FORMULATION 

The geometry is shown in Fig. l(a). A container is 
bounded on two sides by insulated walls 1-2 and 334. 

a distance b apart. Since there is zero heat flow through 
these walls : 

(:t 
- = 0, y = 0 and b, x 2 0. ir ? (1) 

The container is partially filled with warm liquid, and 
the remainder is solid that has frozen into an unknown 
shape to be determined by the analysis. The freezing is 
caused by wall l-4 being maintained at uniform 
temperature t, below the freezing temperature t,: 

I = t, < t,, x = 0, 0 I y 2 b. (2) 

The liquid is at a temperature above 1,. and heat 

la) REGION IN PHYSICAL PLANE. 

I 

(b) REGIONAND BOUND- 
ARYCONDlTlONS IN 
DIMENSIONLESSQUAN- 
TITIES INZ -PLANE. 

FIG. 1. Solidified region formed as a result of non-uniform 
heating along surface. 

convection or conduction will provide energy transfer 
to the interfaces. Since the heat transfer coefficient and 

temperature can vary within the liquid, the energy q(s) 
supplied along the unknown interface is non-uniform. 

If n is the direction of the outward normal, then 

q,(s) = km; x, y on s. 
1 

The interface temperature is also uniform at the liquid 
solidification temperature : 

t = t,, .Y, y on s. (4) 

Within the solid, the temperature distribution must 

satisfy the heat conduction equation (constant proper- 
ties are assumed), 

V2t = 0. (5) 

The shape of the interface will adjust until the heat 
conduction within the solid can transport away to the 
cooled wall the energy q,(s) supplied to the interface. 
This must be done under the constraint that s remains 
at uniform temperature, t,. 

The analysis is partially based on a conformal 
mapping technique for free boundary solidification in 
[5]. It is more convenient to work with dimensionless 

variables so 7’ = (t - t,)/(t, - t,) is used that varies 
between 0 and 1 in the solid. All lengths are divided by 
a characteristic length y defined later. The dimension- 
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less heat flux is 4 = qy/km(ts - t,,.). Then equations 
(l)-(5) become : 

dT 
au=O, Y=O,B, X>O (6) 

T=O, X=0, OsYsB (7) 

dT 
ci,(S) = $g s X, Y on S 

T=l X,YonS (9) 

PT = 0. (IO) 

These conditions are summarized in Fig. l(b). 

Solid region in W- and u-planes 
The quantity - T can be regarded as the potential 

function for dimensionless heat flow, because the 
derivative of -T in a direction is equal to the 
dimensionless heat flux in that direction. An analytic 
function W of a complex variable Z is defined as 

WZ -T + ill/. (11) 

The W, T and + all satisfy Laplace’s equation, and 
lines of constant T and 1(/ form an orthogonal curvi- 
linear net in the physical plane. The heat flow, being 
normal to the constant T lines, is along constant Ji 
lines. 

In the W-plane the solidified region occupies a 
rectangle of unit width (Fig. 2). To obtain the height of 
the rectangle consider the total heat flow Q through 
the solid region. Integrating along the boundary 1-4, 

” Q = k, 
?r 

@lax) dy, 
y)‘1 

or in dimensionless form, 

&Es” @T/ax) dY. 
YI 

From the Cauchy-Riemann equations, aT/BX = 
- a$@ Y, so integration yields 0 = $I - I,+~ as shown 
in Fig. 2. 

Now consider the characteristic length y. It is 
convenient to let y be an average thickness in the x- 
direction of the solidified region. In the limit when the 
region has uniform thickness xs, then y equals x, and 
the average heat flux at the interface is Q/b = 
k,(t, - t,)/y. Thus a convenient characteristic thick- 
ness is y = k,(t, - t,)b/Q = b/o. It follows that B = 
b/y = 0, and the dimensionless thickness of the 
uniform region is I& = 1. The regions in Figs. l(b) 
and 2 have the same height and about the same average 
width, which will aid in the conformal mapping 
between them that will be required. For a given q,(s) 
variation, the Q used in y is an unknown since it 
involves an integration of q&s) over the unknown 
interface s. In the solution, the relation between q&s) 
and Q will be found so that quantities containing Q can 
then be expressed in terms of the known q,(s). 

The derivative of W is from equation (1 l), d W/Z = 

t 
iY, 

FIG. 2. Solidified region mapped into potential plane, 
W = - T + i&. 

-dT/dX + ia$/aX. Using the Cauchy-Riemann 
equation 8$/8X = aT/dY, the $ is eliminated so that 

aw 3T .aT 

az= -ax+?w 
(12) 

Equation (12) is rearranged and integrated to yield 

Z= 
i 

dW 

aT .irT 
+ c. (13) 

-dX+‘dY 

If aTlaX and aT/aY can be related to W, the 
integration can be carried out to obtain Z as a function 
of W. Since the interface 2-3 is a known straight line in 
the W-plane (Fig. 2), the interface in the physical plane 
can then be found. 

The relation between the temperature derivatives 
and W is found by using an intermediate u-plane 
shown in Fig. 3. The unknown interface is in the 
convenient interval, -1 I < I 0. The mapping 
between u and W is obtained from a 
Schwarz-Christoffel transformation : 

dW 1 1 -=_ 
du 2f<%‘) JUT-T&& k2(i + u) 

* (14) 

as shown in the Appendix. The k is found from 
equation (A.3), 

W) Q=_ 
W4 

(15) 

and the point d in Fig. 3 is at d = (1 - k2)/k2. Then 
equation (13) can be written as [by letting dW = 
(d Wjdu)du] : 

1 

z = 2K(k’) 

du 

i 
JZi,ill,,K-- k2(1 + u) 

+ c.‘ (161 

What is now needed is to relate the temperature 
derivatives to u. 

Cauchy integralfor temperature derivatives at interface 
At point 1, which is at 5 + + r, in Fig. 3, the 

derivative aT/iiX # 0 because there is heat flow in the 



978 ROBERT SIEGEL and DON J. SOSOKA 

t 
irl * The u. and G are known from the specified equation 

dT ;O dT # 0 
dT i 0 

-“,‘V -1 ,‘fi 
,‘V 

7 ,,,,,,,,, n’ 
0 

,T * 0 
,/ dY p, 

V/////////////I 

h 
“- c 

1 2 3 1 

(21). However qis not known. and the ratio @/q,will be 
found in the solution. 

FIG. 3. Solidified region mapped into upper half of u-plane 
with interface in region - 1 6 5 < 0. 

X direction throughout the solidified region. However 
the quantity (ST/dX) - (aT/aX)l, -+ 0 as 5 + &- x. 
With this condition satisfied, the relations on p. 372 of 
[7] can be used to relate (aT/aX) - (aT/t?X)), to 
3T/aY along the real axis of the u-plane: 

From equations (6) and (7) the ?T/?Y = 0 along 
boundaries l-2, 3-4 and 4-1, and L?TJ?Y is non-zero 
only along 2-3 as a result of equation (8). Then 
equation (17) can be simplified so that the integration 
extends only between 5 = - 1 and 0; 

_c&+g =; O I f 
c& 
I 

’ I 
?=_, 5_ < d$ (18) 

Since equation (18) will eventually be solved along 
2-3 the (dT/dX)], will be eliminated in favor of 
(aT/aX)l, which is at an end point of 2-3. Equation 
(18) evaluated at 5 = - 1 (point 2) gives 

Subtracting equation (19) from (18) to yield, after 
combining terms under the integral, 

The heat flux q,(s) imposed at the interface in Fig. 1 
will be written as 

q,(s) = qc + Aq F(s) (21) 

where qr is a reference value, Aq is an amplitude, and 
for some applications F(s) could be found by coupling 
this analysis with a solution for heat transfer in the 
liquid. Then 

$) = 1 + :F(S) = G[S(<)] = G(t). (22) 

If an average heat flux through the region is defined as 
4 3 Q/b then y = k,(t, - t,)/q and the dimensionless 
heat flux q,(S) = q&S)/@ The boundary condition, 
equation (8) becomes 

?T - =p 
PN ,\ 

‘f) = ; G[S(<)]. (23) 

The normal derivative (23) at the constant tempera- 
ture interface can be resolved into two 

iT 
- 
c’x s 

= ; G(S) cos Q(S) 

?T 
E 

s 
= $ G(S) sin e(S). 

components 

(24a) 

(24b) 

These are substituted into equation (20) to yield along 
the interface, 

G(~)costJ(~) = G(c = - 1) - 5+1 
n 

s 0 G(t) sin e(c) 

x ?=-I tg- N+ 1) 
d:, - 1 I 5 < 0. (25) 

This Cauchy integral equation will be solved later to 
obtain the angle 0 along the interface which is in the 
interval - 1 2 5 <: 0. 

Relations for interface coordinates 
To develop equations for the interface coordinates, 

equations (24) are substituted into equation (16), to 
yield after rearrangement, 

Z,(l) - z, = __ - 
Wk’) qr 

s 

: -sin 0(t) + i cos e(t) 
X 

?=-I G(f) 

’ mn:fI - k’(1 + z) 
(26) 

The dimensionless height B equals Im[Z,(l = 0) 
- Z,] ; using this in (26) gives a relation for qJ@: 

4r 1 
-= 
4 2BK(k’) 

I 

0 
cos B( 4) 

X 
?=-I mi 

x dm,,mJl - k2(l + t). 
(27) 

The imaginary part of equation (26) divided by B from 
(27) yields the normalized Y-coordinate along the 
interface as 

The real part of equation (26) gives the X-coordinate 
along the interface relative to X, as 
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x,(cg - x2 = - -!...- e 
2fw) 4, 

s i X 
sin 0(t) df 

f=-i~~&f,,/l - k2(1 + f) 

(29) 

The quantity X, - XZ is found by letting 5 = 0 in 
equation (29). 

Equations (28) and (29) give the shape of the 
interface, but to position the interface the X, or X, is 
needed. By integrating the real part of equation (16) 
between points 4 and 3 the X, is found as [note that d 
= (1 - k2)/k2J 

1 

s 

(1 -k*)!kz 

x, =-- 
2K(k’) <=o 

-k’(l +t)’ (30) 

To carry out this integral, 3T/dX is needed in the range 
0 I 5 5 (1 - k2)/k2. From the forms ofequation (20) 
and (24), 

$&)=f G(<= -‘)+ 

X s 0 - 

W)sln e(8 
&-I ct- 5)(f+ 1) 

dt 1 , 

1 -k2 
OS5<7’ -1 rF<O. (31) 

Since aT/aX is needed along 3-4 it would be better if 
equation (31) contained G(t = 0) corresponding to 
point 3 rather than G(5 = - 1)corresponding to point 
2. To accomplish this equation (25) is evaluated at 
point 3 (5 = 0) to obtain 

G(r=O)=G(<=-1)-i 
s 

’ G(f) sin e(r) de 

71 5=-l 4(f+ 1) . 

Multiply this by q,/dand subtract from equation (31). 
After simplification, this results in 

C3T 
,,(t) = $ 

1 ’ 
1 - k2 

Oc:517, - 1 < f _< 0. (32) 

The required relations have now been obtained, and 
the general procedure for using them will be outlined. 

OUTLINE OF ITERATION PROCEDURE 

In general a family of solutions is desired for various 
Aq amplitudes in equation (21) for a given heating 
function F(s). Although the derivation is for a general 
F(s), a specialization will be made to yield some 
illustrative results of physical interest, while somewhat 
shortening the numerical evaluation. In a confined 

geometry such as in Fig. 1, the heat transfer to the 
interface is governed by a cellular convective motion 
and is adequately specified as a function of vertical 
location. Then 

G = 1 + $F(Y) (33) 
r 

and solutions are found for various Aq/q, for an F(Y) 
that is chosen. 

Each solution will involve an iteration process 
during which the size of the rectangle in Fig. 2 is kept 
fixed. The first step is to choose a value for B, the 
dimensionless height in Fig. 2. Since the average 
dimensionless width of the solidified region is about 
unity, typical values of B were selected from 0.53.0. 
With B = Q fixed, the values of k and k’ are found from 
equation (15) and remain constant throughout the 
numerical evaluation for each case. 

If Aq/q, = 0, the solidification interface is a straight 
line X, = 1,O 5 Y, 2 B, and in equation (28) cos B = 
1andG = l.Then 

--_=- 
B 

f 

0 d$.- 

k=-l_flJl - kZ(l + F) 

FM, k) =- 
K(k) 

(34) 

where q5 = sin-’ m (see Es]). This gives a first 
approximation for the relation between Y, and & 

Now let Aq/q, have a small value such as 0.1. Using 
equation (34) as a first approximation for Y, as a 
function oft;, find G(c) from 

G(5) = 1 + $Y,(5)1. (35) 
r 

Equation (25) is then solved for the angle Q(r) by a 
numerical procedure given later. These first approxi- 
mations for e(4) and G(t) are used in equation (28) to 
find a second approximation for Y,(<)/B. Keeping 
Aq~q~ fixed, the new Y,(e) is used in equation (35) to 
obtain an improved G(t) and equation (25) is solved 
again for an improved 8(c). The process is continued 
until Y&5)/B and 0(t) converge. The ratio q,/q is then 
found from equation (27). The X,(t) - X1 is found 
from equation (29), and when { = 0, this yields X, - 
X2. The aT,@X(<) is found from equation (32) and X, 
is obtained from equation (30). The interface is now 
known, since X, and Y, are both known parametri- 
cally in terms of 5. 

The above quantities are dimensionless, and they 
are now related to physical values. Relative to the 
physical height b, the interface is given by x$b = XJB 
and y,/b = Y,/B. The total heat flow is given by 
Q/.&Jr, - t,) = B. The height b is related to dimen- 
sionless parameters by bq,/k,(t, - t,) = B(q,/Q) where 
q,/q was found in the analysis. For Aq = 0 the uniform 
thickness of the region in the x direction is 
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k,(ts - tW)/qr. The ratio of x, to this thickness is 
x,q,/k,(r, - t,) = X,(q,/$. For a given F(Y), a family 
of solutions is generated by choosing various B values 
and a series of Aqjy, for each B. The results are related 
to physical quantities by use of the above relations. 

METHOD OF SOLUTION FOR CAUCHY 

INTEGRAL EQUATION 

The Cauchy integral equation (25) was solved by 
writing it in a non-singular form and then employing 
an interspersed quadrature method similar to that 
described in [9]. Interspersing two integration 
schemes avoids the numerical difficulty of having the 
integration variable and the unknown variable at the 
same point. This would produce a zero in the de- 
nominator of one term in equation (25). The quadra- 
tures express the integrai equation as a system of 
trans~ndental equations. These are then solved by a 
non-linear search routine through the minimization of 
the sum of squares of residuals as will be defined later. 

Starting from equation (25), the relation 
(t + l)/(< - O(F + 1) = l/t< - &!) - l/({ + I) is 
used to split the integral into two parts. Then in the 
first part, subtract and add a G(5) sin&<) term to 
remove the singularity from the integral. The result is 
the non-singular form of the equation : 

G(5) cos e(5) - isin f&<)ln 

= G(t = -1) 

10 -.- 

--.I 71 5=-J 

G(5) sin W; 1 YP, sin W) dZ 

+” 
0 -. - 

71 s ?=-I 

!?@!$!t!@ & 

-1<ejo, -n 
n 

2<e12. (36) 

Following [9] in a general manner, two quadrature 
rules, say Quad A and Quad B are employed. In 
general these can be represented as 

b 

Quad A: 
s 

f(x)dx 2 ,$i w,“f($) (37) 
ll 

Quad B: 
i’ 

b 

f(x)dx 5 
LI 

ig0 $0x:) (38) 

where w;? and x: represent the appropriate weights 
and integration nodal points for quadrature rule A, 
while w: and xf are the same for B. It is required that a 
<xt<b,k=1,2 ,... N,anda1x~<b,k=0,1.2, 
. . N so that xt = a x: = b. 

Now apply these relations to the integrals in (36), 

G(t) sin S(f) - G(<)sin e(t) ____ 
%-c 

df (39) 

and 

i 

0 
VE 

G(f) sin 0(t) 
f .!i=-1 %+ 1 

df. (40) 

Letting UA(5) and U’(5) be approximations by the 
Quad A and Quad B rules, each appropriately adjus- 
ted for the interval - l-0, gives 

VA(S) 2c g H+ 
G(5:) sin @({s) - G(5) sin 0(t) 

54 - < 
-- (41) 

i=i 

UB(Lg z f w” 
G(5:) sin S(tF) - G(5) sin Q(C) 

e-t - 
(42) 

i=O 

Similarly the V integral is approximated ; only the 
Quad A rule is used to avoid a numerical difficulty at < 
= -1: 

Now consider the two sets of integration points {f 
and ly that interlace in the interval -1-O in some 
manner to form a set of 2N + 1 points. The angle e(e) 
evaluated at these points provides 2N + 1 unknown 
values. Since the isotherm 7’ = 1 in Fig. l(b) must be 
normal to the insulated walls l-2 and 3-4, the B(t = 
- 1) = @(r = 0) = 0 and 2N - 1 unknowns remain. 

Referring now to (36), N - 1 “A” equations are 
constructed by approximations of the U(t) integral by 
the Quad A rule evaluated at the t: points, and N “B” 
equations are formed using the Quad B rule at the 1;: 
points. This yields a system of 2N - 1 transcendental 
equations for the t?(c): 

=G(<= - I)-$lA(@~)+;~*, 

j = l, 2, . . ., N - 1 (44a) 

= G({ = - 1) - ; VB(t;) + ; VA, 

j = 1, 2, . . ., N (44b) 

where UA(ST) is directly from (41) with 5 = ;“T, and 
from (42) 

since t?(<$ = @(t$ = 0, and <E = - 1, <“, = 0. 
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3_ 2 i=OorN, 
1- 

i 

1 
$L- 1, 

N 

1 i=l,2 ,..., N-l. i=O,1,2 ,..,, N. 

For Quad A the scheme was 
e 

1 21: .5 
i-_ 

ti = 1, x:=--- 2 1, .4 
N 

.3 
i=l,2 ,..., N. i=l,2 ,..., N. 

While convergence for these rules may not be as rapid .2 

as for some others that could have been employed, they 
have the advantage of producing together a set of 2N 
-i- 1 evenly spaced points. This was useful for sub- 
sequent numerical operations in the solution 

.2 .3 .4 .5 .b .f .8 .9 1.0 

procedure. 
Gb 

Solutions of the resulting non-linear system (44) 
(b) DlMENSlCi’iLESS HEIGHTS. 6. 2, 3. 

were obtained through the minimization of the cor- FIG. 4(b). Interfaa: shapes for various amplitudes of heat flux 

responding sum of squares function, 
variation along interface. 

For the solutions here, two relatively simple in- 
tegration schemes were used. The Quad B rule was the 
extended trapezoid rule : 

2N- 1 

c Rf 
j=l 

where the residuals R, are the difference between the 
two sides of equation (44a) and similarly for (44b). The 
minimization was carried out by using a non-linear 
search routine employing the conjugate gradient me- 
thod [lo]. The Newton-Raphson technique could also 
have been applied. All necessary derivatives were 
numerically calculated and good convergence was 
obtained. 

RESULTS AND DISCUSSION 

To illustrate the use of the method, and obtain 
information on how the solidification interface re- 

.8 .9 1.0 1.1 1.2 1.3 1.4 1.5 
x,/b 

(al DIMENSIONCESS HEIGHTS, B - 0.5. 1.0. 

FIG. 4(a). Interface shapes for various amplitudes of heat flux 
variation along interfaoe. 

sponds to spatial heating variations, a cosine variation 
was selected with half-wavelength b, 

4s -_=G=l 

4s 

Using the procedure outlined earlier, the interface 
coordinates were obtained and are shown in Fig. 4. 
Various Aq/qr curves are given for each B. As B is 
increased, the solid region becomes thin in the X- 
direction relative to its height (note that various 
abscissa scales are used). 

1. lbr 

FIG. 5. Ratio of average to reference heat flux as a function of 
physical parameters. 
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1. or _-- APPROXIMATE THEORY &I 

FE. 6. Amplitude of interface distortion relative to flux 
variation at interface. 

Because B = bq/k,(t, - t,), for a fixed b and 
k,(t, - t,), all the solid shapes in Fig. 4 for each B have 
the same total heat flow Q = gb. However the total 
heat flow is not known a priori, so the curves in Fig, 4 
must be used in conjunction with another set of results 
relating 4 to the known q,. The ratio Q/q, was obtained 
in the analysis, and when this is divided into B it yields 
the parameter q,b/k,(t, - t,) which is in terms of 
known quantities, and is the abscissa of Fig. 5. To use 
the results this figure would be used first to find q/q, 
from the physical quantities. Then B can be calculated, 
and the appropriate interface shape inte~olated from 
Fig. 4. For a plane interface (Aq = 0) the total heat 
flow through the region is bq,. When Aq # 0, the total 

FIG. 7. Interface shapes for Aq/qr = 0.8 and various dimen- 
sionless heights. 

heat flow is bcj. Hence the ordinate of Fig. 5 gives the 
increase of total heat flow that occurs when the 
interface becomes curved. 

The interface shapes are of a cosine type shape, the 
thinner region at y,/h = 1 corresponding to the 
location of largest imposed heating as a lower re- 
sistance to heat flow is needed to pass the imposed 
heating through the solid to the cold wall. The solid 
thickness tends to be inverse to the imposed heating. A 
quantity of interest is the amplitude response of the 
solidification interface to the amplitude of the imposed 
cosine heating. For by = 0 the uniform thickness is 

%I!%,@ = k,(t, - t,)/q,. For Aq z 0 the local 
thickness is x,[~~+~ = X,[k,(t, - t,)/q]. Then the 
relative change in x, ratioed to the change of q is 

which can be readily calculated from the results of 
Figs. 4 and 5. The amplitude response is given in Fig. 6. 
Also shown for Aq/q, = 0.2 are results from the small 
amplitude theory in [6], and good agreement is 
obtained. The amplitude response is shown to be a 

minor function of Aq/q,, but increases with q,b/k,( t, - 

t,). For the larger values of this parameter the layer 
height becomes large relative to its thickness and the 
heat flow tends to be locally l-dim. 

The amplitude response and the nature of the 
solidified shapes are further illustrated by Fig. 7 where 
X, and Y, are plotted. For uniform heating, Aq = 0, 
the X, = 1 for all Y,. Hence these regions are all of 
approximately the same average thickness and the 
effect on shape is shown as the height is increased. 

The results shown correspond to the cosine heating 
in equation (45). Interactive solutions could be made 
by combining the method with an analysis of heat flow 
in the liquid phase. The procedure here offers a partial 
alternative to a fully numerical solution and provides 
some results for comparison with that type of solution. 

I. 

2. 

3. 

4. 

5. 
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APPENDIX 
MAPPING BETWEEN u AND W-PLANES 

Using the Schwarz-Christoffel transformation 

w = c, 
s 

&&z + C,. (A.1) 

Between points 2 and 1 in Figs. 2 and 3, 

Using relation 231.00 in [S] 

where 

J 

d 
k’= ~ 

d+ 1’ 

Between points 3 and 2 

Using relation 233.00 in [8], gives 

i& = C, 
2 1 

= K(k) where k = =. 
Jd+l Jd + 1 

Use equation (A.2) to eliminate C, and obtain 

(A.3) 

Equation (14)is derived from (Al) by using (A.2) to eliminate 
C,, and k = (d + 1)-‘/s to eliminate d. 

METHODE INTEGRALE DE CAUCHY POUR LES FORMES D’INTERFACES DE 
SOLIDIFICATION BIDIMENSIONNELLE 

RCsunn+On developpe une methode pour determiner la forme des interfaces de solidification en regime 
permanent, lorsque le liquide circule sur une surface froide. L’interface de solidification qui est a temperature 
uniforme prend une forme telle que I’tnergie non uniforme convectee vers elle est localement equilibree par la 
conduction dans le solide. La forme de l’interface est interessante pour la structure du cristal pendant la 
solidification; ce qui a une application dans le forgeage des composites metahiques. Les r&hats se 
transposent aux cas de stockage d’energie par changement de phase, quand on a besoin de la configuration 
solidifiee et du transfert thermique global. L’analyse utilise une technique de transformation conforme lib 
aux coordonnees de l’interface dtsiree et aux composantes du gradient de temperature a I’interface. Ces 
composantes sont inconnues parce que la forme de l’interface est inconnue. Une formulation integrale de 
Cauchy foumit une seconde relation donnant les composantes et une solution simuhante foumit la forme de 

l’interface. 

EIN INTEGRALVERFAHREN NACH CAUCHY ZUR BERECHNUNG DER GESTALT VON 
ZWEIDIMENSIONALEN ERSTARRUNGS-GRENZFLACHEN 

Zusanunenfassung-Em Verfahren wurde entwickeh, urn die Gestalt einer station&n Erstarrungs- 
grenzflache zu bestimmen, die sich bildet, wenn eine Fliissigkeit mit einer Temperatur oberhalb ihres 
Gefrierpunktes tiber eine kalte ObertXche striimt. Die Grenztlache, die eine einheitliche Temperatur hat, 
wird eine solche Form annehmen, da13 die durch Konvektion ungleichformig zugeftihrte Energie im 
Gleichgewicht mit der durch Leitung an den Feststoff abgegebenen Energie steht. Die Form der Grenzfliiche 
ist im Hinblick auf die Kristallstruktur interessant, die sich w%hrend der Erstarrung ausbildet ; die 
Beeinflussung der Kristallstruktur findet Anwendung beim GieBen nattirlich verstarkter metallischer 
Kompositwerkstoffe. Die Ergebnisse betreffen such Latentwiirmespeicher-Konstruktionen, wo die 
Verfestigungs-Konfiguration und der Gesamtwlrmeiibergang beniitigt werden. Die Berechnung erfolgt 
nach einem Verfahren der konformen Abbildung, womit die Beziehung zwischen den gesuchten 
Grenzfltichenkoordinaten und den Komponenten des Temperaturgradienten an der Grenzhbhe hergestellt 
wird. Diese. Komponentm sind unbekannt, da die Grenzflachenform unbekannt ist. Eine Integralformu- 
lierung nach Cauchy liefert eine zweite Beziehung fur die Komponenten, und tiber eine simultane Losung 

wird die Form der Grenztlache berechnet. 
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MCnOJlb30BAHWE MHTErPAflbHOTO METOAA KOUIM AJIX OUIPEAEJIEHWI 
IlPOWiJIER ABYMEPHbIX rPAHMq 3ATBEPAEBAHkiR 

AHHOTNUIII - Paspa6oTafi MeTon onpenenewia +opMbl rpaiiarr Tsepnoii @a3bI, o6pa3ymrueiica B 

npoUeccecTaUuoHapHor0 saTeepAeaawir,KorAa mmKocTb c TemepaTypoC Bbme TowW 3ah4ep3ama 
UepKyJIHpyeT BAOnb OXJIamAeHHOfi UOBepXHOCTH. rpaHHUa 3aTBepAeBaHHSh HMeIOlUaII UOCTORHHylO 

TeMUepaTypy, npiio6peTaeT TaKyH) I$OpMy, "pH KOTOpOii 3HepIWl, UOABOAHMaR K Heii KOHBeKUHeii, 

nOKanbHOypaBHoBelll~BaeTcRne~Aa~eitTeUnaTennonpo~oAHocTbH,BTBepAyH,~a3y.~opMa rpaHHUbI 

pa3AenanpeAcTannKeT BHTepec B CBRJU c wccnenonaHweM KpmzTannwecKrix CTPYKTY~, o6pa3ymwaxcfl 
npu samepneeamn; ynpaBneHue npoUeccoh4 06pa3oeaHwa KpecTannmecKoFi crpyKTypbI meeT 3Ha- 

',eHHe UpH OTJUIBKe CCTeCTBeHHO yUpO'IHeHHbIX MeTannW'IeCKHX KOMUO3HUHti. Pe3yfibTaTbl UpeA- 

CTaBnSUOT TaK*e liHTepeC B CBI13H C pa3pa60TKoi aKKyMynRTOpOB 3HepWlH C HCIIOnb30BaHHeM 

(,a30BOrO UepeXOAa, KOrAa HeO6XOAHMbI CBeAeHHIl 0 KOH@,rypaUHH TBepAOfi @a3bI W BenyWHe CyM- 

MapHoroTenJIonepeHoca.rIpwaHane3e Iicnonbsyercn MeTOAKOH~OpMHO~OOTO6paKCeHHK,CUOMOIUbH) 

KOTOpOrO HCKOMbIe KOOpAUHaTbI rpaHHUb1 pa3Aena CBR3bIBaIOTCR C KOMUOHeHTaMU TeMUepaTypHOrO 

rpaAHeHTa Ha UOBepXHOCTEI pa3Aena. 3TH KOMUOHeHTbI HeH3BeCTHb1, TaK KaK HeH3BeCTHa @OpMa 

~paHFiUbIpa3Aena.~HTe~panbHbIMMeTOAOM KOUIH UOJIy'IeHOAOUOnHEiTenbHOeCOOTHOIUeHEie AJlK JTBX 

KOMUOHeHT,YTO AaeT B03MOlKHOCTb OUpeAenHTb @OpMy I-paHltUb1 pa3AeJIa. 


