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Abstract—A method is developed to determine the shape of steady state solidification interfaces formed when
liquid above its freezing point circulates over a cold surface. The solidification interface, which is at uniform
temperature, will form in a shape such that the non-uniform energy convected to it is locally balanced by
conduction into the solid. The interface shape is of interest relative to the crystal structure formed during
solidification ; regulating the crystal structure has application in casting naturally strengthened metallic
composites. The results also pertain to phase-change energy storage devices, where the solidified
configuration and overall heat transfer are needed. The analysis uses a conformal mapping technique to
relate the desired interface coordinates to the components of the temperature gradient at the interface. These
components are unknown because the interface shape is unknown. A Cauchy integral formulation provides a
second relation involving the components, and a simultaneous solution yields the interface shape.

NOMENCLATURE

b, height of region, B = b/y;

C, constant of integration;

d, = (1 — k?)/k?, location on &-axis of u-
plane;

F, function specifying variation of g along
interface;

F(®, k), elliptic integral of the first kind;

G, = q,(s)/q,, ratio of local heat flux along
interface to reference flux;

K(k), complete elliptic integral of the first kind;

ko thermal conductivity of solid;

k, modulus of elliptic integral, k' =
J1 - k2,

n, normal to interface, N = n/y;

0, total heat flow rate through solid region,
Q = Q/knlts — ta);

q, heat flow rate per unit area, § = qy/k,,
(ts — tu) = 4/4;

q, = Q/b, average heat flux through region;

Ag, amplitude of imposed heat flux variation
along interface ;

s, coordinate along solidification interface,
S = sfy;

T, = (t — t,)/(t, — t,), temperature ratio;

t, temperature;

uv, integrals defined in equations (39) and
(40);

u, = ¢ 4+ iy, intermediate mapping plane;

w, = — T + iy, complex potential
function ;

x, ¥, Cartesian coordinates, X = x/y, Y = y/y;

z, = x + iy, complex variable;

Z, = z}y;

VZ — iZ + _(‘i .

’ Tax? oy’

o2 o*
2 [ — —
v “ax Ty
Greek symbols
7 = knlt, — t,)b/Q = ky(t, — 1,)/q, length

scale quantity;
1, ordinate in u-plane;
8, angle from x direction to normal of
interface, see Fig, 1;
£ abscissa in u-plane;
g dummy variable of integration;
v, ordinate in W-plane.
Subscripts
r, reference value when Ag = 0;
s, at solidification interface;
w, cooled wall;
1, 2, 3, 4, the four corners of the solidified region,
see Fig, 1.
Superscripts
A, B, refer to Quad A and Quad B integration
rules.
INTRODUCTION

IN A HEAT conduction analysis the geometry of the
solid is usually known, and various boundary con-
ditions are applied to yield the temperature distri-
bution or heat flows within the body. The present
analysis will deal with a situation where an additional
boundary condition is specified. The shape of the
body is unknown and is to be found to satisfy this
additional constraint. This type of analysis has appli-
cation for obtaining equilibrium shapes of a solid in
contact with its superheated liquid phase. The in-
terface between the phases is at the solidification
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temperature and also has heat transfer to it from the
liquid phase. The interface will form such that the
convective heat transfer to it can be conducted away by
the solid to the portion of the boundary that is being
cooled. The analysis will show how the interface shape
isinfluenced by non-uniformities in the convective heat
transfer.

The present method is pertinent to the analysis of
continuous casting processes for manufacturing
strengthened metallic components. An analysis of
interface shapes during casting was made in [1] for
uniform convection at the solidification interface. By
having convective conditions that are sufficiently well
regulated at the interface, a strengthened composite
structure can be formed consisting of a reinforcing
phase within a metallic matrix. Related situations are
the effects of natural convection in the melted region
around a cylinder [ 2], the shape of a steady state frozen
layer formed on a cold plate within a warm liquid flow
[3, 4], and the shapes of solidified regions in phase
change energy storage devices. The analytical results
can also be used for comparison with solutions by
finite difference procedures.

This analysis considers a solid region that has one
boundary at a temperature below the freezing point.
Another boundary is the solidification interface in
contact with the liquid phase. The interface shape is
found subject to constraints of uniform temperature
and an imposed heat flux distribution. A conformal
mapping procedure developed in [5] can be used to
obtain the interface coordinates if the relation is
known between components of the temperature gra-
dient along the interface; this relation is found by
using a Cauchy integral formulation. To demonstrate
the method and provide useful results, solidified
shapes are obtained for a cosine heating variation
along the interface. Analytical results were found in [ 6]
for small cosine heating amplitudes, and good agree-
ment is obtained. Other heating distributions can be
used as obtained by coupling the present solution with
an analysis in the liquid phase. The use of conformal
mapping limits the method to 2-dim. configurations.

ANALYTICAL FORMULATION

The geometry is shown in Fig. 1(a). A container is
bounded on two sides by insulated walls 1-2 and 34,
adistance b apart. Since there is zero heat flow through
these walls:

ot

=Y

R y=0 and b, x > 0. (1)

The container is partially filled with warm liquid, and
the remainder is solid that has frozen into an unknown
shape to be determined by the analysis. The freezing is
caused by wall 1-4 being maintained at uniform

temperature t,, below the freezing temperature ¢,:
t=t,<t, x=0, 0<y<h (2)

The liquid is at a temperature above ¢, and heat
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FiG. 1. Solidified region formed as a result of non-uiiform
heating along surface.

convection or conduction will provide energy transfer
to the interface s. Since the heat transfer coefficient and
temperature can vary within the liquid, the energy g(s)
supplied along the unknown interface is non-uniform.
If n is the direction of the outward normal, then

1
qs(s) = kmr X,y on s. (3)

on
The interface temperature is also uniform at the liquid
solidification temperature :

t=1, X, yons. 4)

Within the solid, the temperature distribution must
satisfy the heat conduction equation (constant proper-
ties are assumed),

V2 = 0. (5)

The shape of the interface will adjust until the heat
conduction within the solid can transport away to the
cooled wall the energy g,(s) supplied to the interface.
This must be done under the constraint that s remains
at uniform temperature, t,.

The analysis is partially based on a conformal
mapping technique for free boundary solidification in
[5]. It is more convenient to work with dimensionless
variables so T' = (¢t — t,,)/(¢, — t,) is used that varies
between 0 and 1 in the solid. All lengths are divided by
a characteristic length y defined later. The dimension-
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less heat flux is § = gy/k,(t, — t,)- Then equations
(1)-(5) become:

aT

57 =0 Y=0B X>0 (6)
T=0, X=0 0<Y<B )]
oT
sy = 0T
VAR aN |, X Yons (8)
T=1 X.YonS§ )
V2T =0. (10

These conditions are summarized in Fig. 1(b).

Solid region in W- and u-planes

The quantity — T can be regarded as the potential
function for dimensionless heat flow, because the
derivative of —T in a direction is equal to the
dimensionless heat flux in that direction. An analytic
function W of a complex variable Z is defined as

W= -T+iy. 11)

The W, T and y all satisfy Laplace’s equation, and
lines of constant T and ¥ form an orthogonal curvi-
linear net in the physical plane. The heat flow, being
normal to the constant T lines, is along constant
lines.

In the W-plane the solidified region occupies a
rectangle of unit width (Fig. 2). To obtain the height of
the rectangle consider the total heat flow @ through
the solid region. Integrating along the boundary 1-4,

Ya
Q=ky f (0t/ox) dy,

¥

or in dimensionless form,

0= r (0T/éX) dY.
¥

From the Cauchy-Riemann equations, 0T/0X =
—8W/dY, so integration yields @ = Y, — ¥, as shown
in Fig. 2.

Now consider the characteristic length y. It is
convenient to let y be an average thickness in the x-
direction of the solidified region. In the limit when the
region has uniform thickness x, then y equals x, and
the average heat flux at the interface is Q/b =
kot — t.)/y. Thus a convenient characteristic thick-
nessisy = k(t, — t.)b/Q = b/Q. It follows that B =
b/y = @, and the dimensionless thickness of the
uniform region is x,/y = 1. The regions in Figs. 1(b)
and 2 have the same height and about the same average
width, which will aid in the conformal mapping
between them that will be required. For a given g,(s)
variation, the @ used in y is an unknown since it
involves an integration of g¢,(s) over the unknown
interface s. In the sofution, the relation between g(s)
and Q will be found so that quantities containing Q can
then be expressed in terms of the known ¢,(s).

The derivative of W is from equation (11), 6W/6Z =

977
iy

2’ P 1 -7
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Fic. 2. Solidified region mapped into potential plane,
W=—-T+iy

—0T/0X + 18y/0X. Using the Cauchy-Riemann
equation dy/éX = OT/3Y, the ¢ is eliminated so that

aw __er oT
oz - “ax ey

Equation {12} is rearranged and integrated to yield

dw

(12)

,5T+C'

+ 15?

If 0T/0X and 0T/2Y can be related to W, the
integration can be carried out to obtain Z as a function
of W. Since the interface 2-3 is a known straight line in
the W-plane (Fig. 2}, the interface in the physical plane
can then be found.

The relation between the temperature derivatives
and W is found by using an intermediate u-plane
shown in Fig. 3. The unknown interface is in the
convenient interval, —1 < ¢ < 0. The mapping

(13)

between u and W is obtained from a
Schwarz-Christoffel transformation:
dw 1 1

(14)

du 2KK) Ju s I Ju ST - KL+
as shown in the Appendix. The k is found from
equation (A.3),

_ K(k)
and the point 4 in Fig. 3isat d = {1 — k*)/k% Then
equation (13) can be written as [by letting dW =
(dW/du)du]:

(15)

1

2K(k")

N j‘ du

(_‘314,;[%:‘;)\/“ +1./u /1 =K1 +u)
+ C. (16)
What is now needed is to relate the temperature

derivatives to u.

Cauchy integral for temperature derivatives at interface
At point 1, which is at £ = + x in Fig. 3, the
derivative 0T/0X # Obecause there is heat flow in the



978

in

~9T-0
ﬂ: 0 or #0 ﬂT < / aY
= Doase e st e
A : A £

1 2 3 4 1

Fi1G. 3. Solidified region mapped into upper half of u-plane
with interface in region —1 < £ < 0.

X direction throughout the solidified region. However
the quantity (6T/6X) — (6T/3X)|, » 0as¢& — + x.
With this condition satisfied, the relations on p. 372 of
[7] can be used to relate (0T/6X) — (8T/0X)), to
0T/0Y along the real axis of the u-plane:

&)

T

_aTé) aT| 1 (7 av & 7
axOtax =xT, 7ot W
From equations (6) and (7) the 8T/8Y = O along

boundaries 1-2, 3-4 and 4-1, and ¢T/¢Y is non-zero
only along 2-3 as a result of equation (8). Then
equation (17) can be simplified so that the integration

extends only between £ = —1 and O;
oT

L S W(E)dg 8

X +6Xl—n€_lfé (18)

Since equation (18) will eventually be solved along
2-3 the (0T/@X)|, will be eliminated in favor of
(6T/6X)|, which is at an end point of 2-3. Equation
(18) evaluated at & = —1 (point 2) gives

aT
"]E’=—1 E+1 -

Subtracting equation (19) from (18) to yield, after
combining terms under the integral,

6T 8T

6X

(19)

T
04

E+1 [° ay N
2 n £:_|(Z—f)(5+ 1) ¢

(20)

The heat flux g(s) imposed at the interface in Fig. 1
will be written as

q5(s) = g, + Aq F(s) (21)

where g, is a reference value, Aqg is an amplitude, and
for some applications F(s) could be found by coupling
this analysis with a solution for heat transfer in the
liquid. Then

43 _ g o
qr Qr
If an average heat flux through the region is defined as
g = Q/btheny = k,(t, — t,)/q and the dimensionless
heat flux 4,(S) = q¢.(S)/q. The boundary condition,
equation (8), becomes

T _adS) 4
ﬁNN— 7l

oT

—8—5(’(5)4-

T
1.4

G[S(®)] = 6. (22)

7 OS] (23)
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* The g, and G are known from the specified equation

(21). However 4 is not known, and the ratio g/q, will be
found in the solution.

The normal derivative (23) at the constant tempera-
ture interface can be resolved into two components

°T

=% G(8)cos 8(S) (24a)
Xls ¢

Py

T _ 4 Gisysin 6(S). (24b)
Ylg 4

These are substituted into equation (20) to yield along
the interface,

G(&)cosb(S) = G =

°  G(§)sin B(C)
X — df,
e E-ag+ D
This Cauchy integral equation will be solved later to

obtain the angle 6 along the interface which is in the
interval —1 < & < 0.

-1<&<0 (25

Relations for interface coordinates

To develop equations for the interface coordinates,
equations (24) are substituted into equation (16), to
yield after rearrangement,

248 - 2 = 5 &
5 J —sin 6(&) + icos 6(&)
=1 G(Z)
dé

X — h . (26)
JE+ 1 /-EJ/1 -k + D
The dimensionless height B equals Im[Z{¢ = 0)
— Z,]; using this in (26) gives a relation for ¢,/q:
_ 1
" 2BK(k)
y JO cos (&)
I= -1 G(E)

SRS

dé
—— = . @7
P+ 1/ =& -k (1 +
The imaginary part of equation (26) divided by B from

(27) yields the normalized Y-coordinate along the
interface as

Ys(é) J‘f: -1

cos 6(&) dZ -
G JT+1/-EJ1-K(1+

cos 6(&) dé

GO ST/ /T-K1+D
(28)

The real part of equation (26) gives the X-coordinate
along the interface relative to X, as
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I g
2K(K') g,

sin 6(%) df

X ,L_; GQ JSTri /i /1-k1+D
(29)

The quantity X', — X, is found by letting £ = 0 in
equation (29).

Equations (28) and (29) give the shape of the
interface, but to position the interface the X; or X, is
needed. By integrating the real part of equation (16)
between points 4 and 3 the X, is found as [note that d
= (1 - kK]

X&) -X;, =~

1 (1 - k2) k2
X3 =) oo
1 dé
. {30
‘o rijidiomirg )
=

To carry out this integral, dT/0X is needed in the range
0 < & < (1 — k*)/k* From the forms of equation (20)
and (24),

o g _ &+ 1
a—X‘(é)—E[G(é = —U—T

°  G(&sin6(d)
* Lw, C-oC+ 1)“5}’
1 — &2 .
0l -tsis<0 31)

Since dT/0X is needed along 3—4 it would be better if

equation (31) contained G(¢ = 0) corresponding to

point 3 rather than G{(¢ = — 1) corresponding to point

2. To accomplish this equation (25) is evaluated at
point 3 (¢ = 0) to obtain

1% G&sinb@ .

G(=0)=G({=—-1) nJ ) dc.

=1

Multiply this by ¢,/ and subtract from equation {31).
After simplification, this results in

aTr a | .. * G(sinb()
o=l =0-2> ekl
X (9] q_[ (€=0) 7 e EE-0) df],

2

0<¢x ,~1<&<o.

(32)

The required relations have now been obtained, and
the general procedure for using them will be outlined.

OUTLINE OF ITERATION PROCEDURE

In general a family of solutions is desired for various
Aq amplitudes in equation (21) for a given heating
function F(s). Although the derivation is for a general
F(s), a specialization will be made to yield some
illustrative results of physical interest, while somewhat
shortening the numerical evaluation. In a confined

HMMT 25:7 - F
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geometry such as in Fig. 1, the heat transfer to the
interface is governed by a cellular convective motion
and is adequately specified as a function of vertical
location. Then

G=1+%€3Y}

¥

(33)

and solutions are found for various Ag/q, for an F(Y)
that is chosen.

Each solution will involve an iteration process
during which the size of the rectangle in Fig. 2 is kept
fixed. The first step is to choose a value for B, the
dimensionless height in Fig. 2. Since the average
dimensionless width of the solidified region is about
unity, typical values of B were selected from 0.5-3.0.
With B = { fixed, the values of k and k’ are found from
equation (15) and remain constant throughout the
numerical evaluation for each case.

If Agq/q, = 0, the solidification interface is a straight
line X, = 1,0 < Y, < B,and in equation (28),cos § =
1 and G = 1. Then

5 d?;'
Y0 L=~f\/5+1vf’i?Jl—k2(1+€)

B 0 dZ
e JE+ LT+
K(k)

where ¢ = sin™* /& + 1 (see [8]). This gives a first
approximation for the relation between Y, and £.

Now let Ag/g, have a small value such as 0.1. Using
equation (34) as a first approximation for Y, as a
function of ¢&, find G(&) from

Goy=1+ %‘ZF[YS(IS)]- (35)
Equation (25) is then solved for the angle 6(¢) by a
numerical procedure given later. These first approxi-
mations for 6(£) and G(&) are used in equation (28) to
find a second approximation for Y (£)/B. Keeping
Ag/q, fixed, the new Y (&) is used in equation (35) to
obtain an improved G(&) and equation (25) is solved
again for an improved 8(¢). The process is continued
until Y (£)/B and 6(¢) converge. The ratio ¢,/ is then
found from equation (27). The X (&) — X, is found
from equation (29), and when ¢ = 0, this yields X, ~
X,. The 8T/0X(£) is found from equation {32) and X,
is obtained from equation (30). The interface is now
known, since X, and Y, are both known parametri-
cally in terms of &,

The above quantities are dimensionless, and they
are now related to physical values. Relative to the
physical height b, the interface is given by x /b = X /B
and y/b = Y/B. The total heat flow is given by
Qlk(t, — t,) = B. The height b is related to dimen-
sionless parameters by bg /k(t, — t.) = B(q./q) where
4,/q was found in the analysis. For Ag = 0 the uniform
thickness of the region in the x direction is
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kpo{ts — ty)/q,. The ratio of x, to this thickness is
X G/ kalts — 1) = X {q,/g). For a given F(Y), a family
of solutions is generated by choosing various B values
and a series of Ag/q, for each B. The results are related
to physical quantities by use of the above relations.

METHOD OF SOLUTION FOR CAUCHY
INTEGRAL EQUATION

The Cauchy integral equation (25) was solved by
writing it in a non-singular form and then employing
an interspersed quadrature method similar to that
described in [9]. Interspersing two integration
schemes avoids the numerical difficulty of having the
integration variable and the unknown variable at the
same point. This would produce a zero in the de-
nominator of one term in equation (25). The quadra-
tures express the integral equation as a system of
transcendental equations. These are then solved by a
non-linear search routine through the minimization of
the sum of squares of residuals as will be defined later.

Starting from equation (25), the relation
C+1E-aC+D = Y&-O-1E+1) is
used to split the integral into two parts. Then in the
first part, subtract and add a G(¢) sin 8(¢) term to
remove the singularity from the integral. The result is
the non-singular form of the equation:

G(&) [cos 0(E) — lsm 0(&) In (é +5 ﬂ

=G¢=-1)
1 f GQ)sin6G) ~ G(O)sin 8) -
T -y E"é
+1J (stm 9@ az
mji=-1 ¢+
z n T
-1<é<0, 2s9<2 (36)

Following {9] in a general manner, two quadrature
rules, say Quad A and Quad B are employed. In
general these can be represented as
b

Quad A: f (37)

a

fx)dx x Y whfx
k=1

b N
Quad B: jf(x)dx x Y whf(x))  (38)
a k=0

where wj and x} represent the appropriate weights
and integration nodal points for quadrature rule A,
while w} and x} are the same for B. It is required that a
<xp<bk=12. . Nanda<xP <bk=012
.. N so that x3 = aq, x& = b.

Now apply these relations to the integrals in (36),

U = f} G(E)Siné‘(ég:?(é)smﬂ(é)
‘=1 =

af (39)
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and

G(é) G(&)sin (&) 4z
{ T i1 dé. {40)

W= -]
Letting UA(¢) and U®B(¢) be approximations by the
Quad A and Quad B rules, each appropriately adjus-
ted for the interval —1-0, gives

A A _
and
N G B By __ G
URE) = 3w (&) sin 8(S7') — G(&) sin B(¢) 42)

i=0 éB 5

Similarly the V integral is approximated; only the

Quad A rule is used to avoid a numerical difficulty at ¢
= —1:

S A G(ER)sin 0L

VA x Y w2 43

;Z:x ' G+ “y

Now consider the two sets of integration points &&
and £ that interlace in the interval —1-0 in some
manner to form a set of 2N + 1 points. The angle 0(¢)
evaluated at these points provides 2N + 1 unknown
values. Since the isotherm T = 1 in Fig. 1(b) must be
normal to the insulated walls 1-2 and 3-4, the (¢ =
—1) = 6{(¢ = 0) = Oand 2N — 1 unknowns remain.

Referring now to (36), N — 1 “A” equations are
constructed by approximations of the U(¢) integral by
the Quad A rule evaluated at the £8 points, and N “B”
equations are formed using the Quad B rule at the &2
points. This yields a system of 2N — 1 transcendental
equations for the 6(¢):

B
G(&H) [cos 6} — Lsin 6(¢7) In (éi +31 )1[
T - ‘51

1
= GlE= - D UMD+ VA

j=1L2,..,N~1 (44a)
1. 241
G(EY) [cos 0(e}) - —sin 6} In (‘f: 2\ ﬂ
o1 1
=G(¢ = —1) - -UBE) + — VA,
n 7.4
i=12..,N (4b)
where UA(E?) is directly from (41) with & = ¥, and
from (42)
G(¢})sin ()
UP(ES) = wh HJT:&}‘—
Ay or A
+ W%G(éj )2‘:1 9(5;)
-1 B By _ A . A
; 5 G(&) sin 9(22 = é;él )sin (&) (@4c)

since 8(£8) = O(¢8) = 0,and &8 = —1, &8 = 0.
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For the solutions here, two relatively simple in-
tegration schemes were used. The Quad B rule was the
extended trapezoid rule:

WB = % i=0o0r N, x?=]%—l,
1 i=12 .. ,N~1. i=012..N.
For Quad A the scheme was
1
=3
wh =1, x;‘:T—l,
i=12..,N. i=1,2..,N.

While convergence for these rules may not be as rapid
as for some others that could have been employed, they
have the advantage of producing together a set of 2N
-+ 1 evenly spaced points. This was useful for sub-
sequent numerical operations in the solution
procedure.

Solutions of the resulting non-linear system (44)
were obtained through the minimization of the cor-
responding sum of squares function,

2N~-1

L R
j=1

where the residuals R; are the difference between the
two sides of equation (44a) and similarly for (44b). The
minimization was carried out by using a non-linear
search routine employing the conjugate gradient me-
thod [10]. The Newton-Raphson technique could also
have been applied. All necessary derivatives were
numerically calculated and good convergence was
obtained.

RESULTS AND DISCUSSION

To illustrate the use of the method, and obtain
mformation on how the solidification interface re-

1718 19 20 21 22 23 24 25
I [T

ysfo

4g o2},
=G

.8 .9

10 L1 1.2 L3 L4 L5

x¢/b
{a) DIMENSIONLESS HEIGHTS, B= 0.5, 1.0.

Fi1G. 4(a). Interface shapes for various amplitudes of heat flux
variation along interface.
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Xg/b
{b) DIMENSIONLESS HEIGHTS, B+ 2, 3.

F1G. 4(b). Interface shapes for various amplitudes of heat flux
variation along interface.

sponds to spatial heating variations, a cosine variation
was selected with half-wavelength b,

s

A Y

—=G=1~ ——gcos(zzx)= 1 - —A—ECOS(‘E—-).

g 4 b 4 B
(45)

Using the procedure outlined earlier, the interface
coordinates were obtained and are shown in Fig. 4.
Various Ag/g, curves are given for each B. As B is
increased, the solid region becomes thin in the x-
direction relative to its height (note that various
abscissa scales are used).

Lio—

T,

l.Oﬁr—

l’m_——ud\
1L.02—

0z
L0 | 1 | I—
.5 10 L5 20 25 30
b Kyt - )

F1G. 5. Ratio of average to reference heat flux as a function of
physical parameters.
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Jat
L 2 .g2 Ag
9 9r a,
8 0.8
- 0.6 =
7
o :, 0.4
£ o ;
7l
1S
=l e
153
E4 Y.
2
b
| | ! | | ! ] ]

0 .4 8 L2 L6 20 24 28 32
0, Kyt

F1G. 6. Amplitude of interface distortion relative to flux
variation at interface.

Because B = bg/k,(t, — t,), for a fixed b and
kalt, — t,),all the solid shapesin Fig. 4 for each B have
the same total heat flow @ = gb. However the total
heat flow is not known a priori, so the curves in Fig. 4
must be used in conjunction with another set of results
relating g to the known g,. The ratio §/q, was obtained
in the analysis, and when this is divided into B it yields
the parameter g,b/k,(t, — t,) which is in terms of
known quantities, and is the abscissa of Fig. 5. To use
the results this figure would be used first to find §/g,
from the physical quantities. Then B can be calculated,
and the appropriate interface shape interpolated from
Fig. 4. For a plane interface (Ag = 0) the total heat
flow through the region is bg,. When Ag # 0, the total
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F1G. 7. Interface shapes for Ag/q, = 0.8 and various dimen-
sionless heights.
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heat flow is bg. Hence the ordinate of Fig. 5 gives the
increase of total heat flow that occurs when the
interface becomes curved.

The interface shapes are of a cosine type shape, the
thinner region at y/b = 1 corresponding to the
location of largest imposed heating as a lower re-
sistance to heat flow is needed to pass the imposed
heating through the solid to the cold wall. The solid
thickness tends to be inverse to the imposed heating. A
quantity of interest is the amplitude response of the
solidification interface to the amplitude of the imposed
cosine heating. For Ag = 0 the uniform thickness is
XJag=0 = knlty — t,)/q, For Aq # 0 the local
thickness is X,|a;n0 = X [kalt, — 1,)/d]. Then the
relative change in x, ratioed to the change of ¢ is

(X - 'xs.mir\)Aq;f:O/(xs)Aq:O
(qs,max - qs.min}Aq;iO/(qs)qu()
_ (Qr/é){xs.max - Xs.min)

24q/q,

5. max

which can be readily caiculated from the results of
Figs. 4 and 5. The amplitude response is given in Fig. 6.
Also shown for Ag/q, = 0.2 are results from the small
amplitude theory in [6], and good agreement is
obtained. The amplitude response is shown to be a
minor function of Ag/q,, but increases with ¢.b/k (¢, —
t,). For the larger values of this parameter the layer
height becomes large relative to its thickness and the
heat flow tends to be locally 1-dim.

The amplitude response and the nature of the
solidified shapes are further illustrated by Fig. 7 where
X, and Y, are plotted. For uniform heating, Ag = 0,
the X, = 1 for all Y. Hence these regions are all of
approximately the same average thickness and the
effect on shape is shown as the height is increased.

The results shown correspond to the cosine heating
in equation (45). Interactive solutions could be made
by combining the method with an analysis of heat flow
in the liquid phase. The procedure here offers a partial
alternative to a fully numerical solution and provides
some results for comparison with that type of solution.
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Using relation 231.00 in [8]

G2 p(ﬁk'>=9i, 2_Kk) (A2)

=i /d+1

where

Between points 3 and 2

10. B. S. Gottfried and J. Weisman, Introduction to Optimi- C, ° dé
zation Theory, pp. 95-104. Prentice-Hall, Englewood W~ W, = —iJ = ) f — .
Cliffs, NJ (1973). Ve Jer1/-c/-¢c+4d
Using relation 233.00 in [8], gives
APPENDIX g , (8] & 1
. MAPPING BETW.EEN u AND W-PL.‘?NES iQ -, K(k) where k = )
Using the Schwarz—Christoffel transformation \/d +1 \/d +1
d . . .
W=C, J d + C,. (A.1)  Use equation {A.2) to eliminate C, and obtain
\/u+1\/ \/u—d K(k)
Between points 2 and 1 in Figs. 2 and 3, = Xy (A3)
c, (! dé
W,-W,=-1= jl"[ — . Equation (14)is derived from (A.1) by using (A.2) to eliminate
Hemw/=E=1/=E/=¢+d  C, andk = (d + 1)~*7 to eliminate d.

METHODE INTEGRALE DE CAUCHY POUR LES FORMES D’INTERFACES DE
SOLIDIFICATION BIDIMENSIONNELLE

Résumé—On développe une méthode pour déterminer la forme des interfaces de solidification en régime
permanent, lorsque le liquide circule sur une surface froide. L'interface de solidification qui est 4 température
uniforme prend une forme telle que I’énergie non uniforme convectée vers elle est localement équilibrée par la
conduction dans le solide. La forme de 'interface est intéressante pour la structure du cristal pendant la
solidification; ce qui a une application dans le forgeage des composites métalliques. Les résultats se
transposent aux cas de stockage d’énergie par changement de phase, quand on a besoin de la configuration
solidifiée et du transfert thermique global. L’analyse utilise une technique de transformation conforme liée
aux coordonnées de Iinterface désirée et aux composantes du gradient de température a I'interface. Ces
composantes sont inconnues parce que la forme de I'interface est inconnue. Une formulation intégrale de
Cauchy fournit une seconde relation donnant les composantes et une solution simultanée fournit la forme de
l'interface.

EIN INTEGRALVERFAHREN NACH CAUCHY ZUR BERECHNUNG DER GESTALT VON
ZWEIDIMENSIONALEN ERSTARRUNGS-GRENZFLACHEN

Zusammenfassung—Ein Verfahren wurde entwickelt, um die Gestalt einer stationdren Erstarrungs-
grenzfliche zu bestimmen, die sich bildet, wenn eine Fliissigkeit mit einer Temperatur oberhalb ihres
Gefrierpunktes iiber eine kalte Oberfliche stromt. Die Grenzfliche, die eine einheitliche Temperatur hat,
wird eine solche Form annehmen, daf3 die durch Konvektion ungleichférmig zugefiihrte Energie im
Gleichgewicht mit der durch Leitung an den Feststoff abgegebenen Energie steht. Die Form der Grenzfliche
ist im Hinblick auf die Kristallstruktur interessant, die sich wihrend der Erstarrung ausbildet; die
Beeinflussung der Kristallstruktur findet Anwendung beim GieBen natiirlich verstirkter metallischer
Kompositwerkstoffe. Die Ergebnisse betreffen auch Latentwarmespeicher-Konstruktionen, wo die
Verfestigungs-K onfiguration und der Gesamtwirmeiibergang benétigt werden. Die Berechnung erfolgt
nach einem Verfahren der konformen Abbildung, womit die Beziehung zwischen den gesuchten
Grenzflichenkoordinaten und den Komponenten des Temperaturgradienten an der Grenzfliche hergestellt
wird. Diese Komponenten sind unbekannt, da die Grenzflichenform unbekannt ist. Eine Integralformu-
lierung nach Cauchy liefert eine zweite Beziehung fiir die Komponenten, und iiber ¢ine simultane Losung
wird die Form der Grenzflache berechnet.



984

RoBERT SIEGEL and Don J. Sosoka

WCINOJIb30BAHUE UMHTEIPAJIBHOIO METOJA KOWH [JiA ONPEAEJIEHUA
IMPOGUJIEN NIBYMEPHBIX T'PAHULL 3ATBEPAEBAHHA

AnnoTauns — Paspaboran mero onpeneneHus ¢(opMmbl rpaHun TBepaod ¢aswl, obpasyioweics B
npoLecce CTAIIHOHAPHOrO 3aTBEPAEBAHMA, KOTAA XHIAKOCTL C TEMNEPATYPOH BbILE TOYKH 3aMEP3aHHUs
IMPKYJIHPYET BAOJb OXJaXACHHOH nosepxHocTH. [paHuua 3aTeepaeBaHus, UMEHOLUAA MOCTOAHHYIO
TeMnepaTypy, npuobpeTaeT Takyio $GopMy, MpH KOTOPOH JHEPrHf, MOABOAMMAS K HEH KOHBEKUMEH,
N0KaJbHO yPaBHOBEIUHBAETCA NEpeAayeii TENIa TeNI0NPOBOAHOCTLIO B TBepAYyHo a3y, Popma rpaHub!
pasfena NPEACTABIAET HHTEPEC B CBA3M C HCCNEAOBAHHEM KPHCTAJUTHYECKHX CTPYKTYP, 06pasyromuxcs
NpH 3aTBEPAEBAHMH ; YNPABJIEHHE MPOLECCOM OOPa3OBAHHA KPHUCTAIMYECKOH CTPYKTYphl HMeEET 3Ha-
YeHHe TNpH OTJIMBKE E€CTECTBEHHO YNPOYHEHHBIX METAJIMYECKHX KOMMO3MUHH. PelyabTaTel mnpes-
CTAaBJAIOT TAKXKE HMHTEPEC B CBA3M ¢ pa3paboTKol aKKyMy/NATOPOB 3HEPTHM C HCNOJB30BAHUEM
¢a3zoBoro nepexoaa, Koraa Heo6XoMMMbI CBEICHHA O KOHQHUTypauun TBepao# (a3bl U BeIHYMHE CYM-
MapHOro TenjonepeHoca. [Ipy aHanu3e HCNOJb3YETCH METO KOHHOPMHOTO 0TOD paXkeHHs, ¢ NOMOLLBIO
KOTOPOr0 HCKOMbIE KOOPAHHATHI TPaHMILI Pa3fiea CBA3LIBAIOTCA ¢ KOMIOHEHTAMH TEMNEPAaTYPHOro
rpagMeHTa Ha OBEPXHOCTH pasfienia. ITH KOMIIOHEHTHLI HEH3BECTHEI, TaK Kak HeH3BecTHa Qopma
rpaHHuUbI pa3aena. MHTerpanpabiM MeTo10oM Koliln nosty4eHo JONOIHKTEILHOE COOTHOLLEHHE [UTA ITHX
KOMIOHEHT, 4TO [JaeT BO3MOXHOCTb ONpPENeIHTh GOPMY IpaHHLbI pa3aea.



